Summary

The redesigned optoelectronic sorting machines of the type “Rheum Dataset” are based on proven components which are individually, custom-designed for the specific application. Combined with previously tested standard components, one electronic evaluation system can therefore be used for different sorting duties (monochrome or true colors, as well as one- or two-sided scanning). Typical applications include the sorting of broken glass, NF meals, plastics, foodstuffs, salt and other minerals, such as ores,feldspar, gypsum and limestone. Other applications are found in the pharmaceutical industry and the recycling sector.

Resumen

Las clasificadoras optoeléctronicas de nuevo concepto del tipo “Rheum Dataset” se basan en componentes de eficacia probada que se combinan individualmente para adecuarse para el correspondiente objetivo. De este modo se puede emplear diferentes componentes con una electrónica de evaluación (monocromática o co- lores sólidos, así como una visualización anóbilomequina) mediante componentes estándar ya probados. Los cargos de aplicación son la clasificación de cristal triturado, metales NE, plásticos, productos alimenticios, sal, así como diversos minerales diferentes como mineral metálico, feldespato, yeso y piedra caliza junto con aplicaciones en farmacia y en el ámbito del reciclaje de materiales.

1. Introduction and Function
Optical sorting or even mechanical picking with an sector system is suitable for all applications in which colour constitutes the only distinctive feature of the value material. For highly valuable mate- rials, the only alternatives so far have been picking belts and man- ual sorting [1, 2].

The optoelectronic sorting machines of the type Rheum Dataset are based on proven components, which are individually cus- tom-designed for the specific application. In combination with tested standard components, an electronic evaluation system can be used for different sorting duties (monochrome or true colors, one- or two-sided scanning). The ability of the machines to rec- ognize true colors in conjunction with a freely selectable filter design enables the reliable detection of colour aspects such that are invisible to both the human eye and industrial RGB cameras.

2. Set-Up
Prior to the actual optical sorting process, it is necessary to sepa- rate the particles from each other to enable their optical detection.

Fig. 1 shows a schematic of the set-up.

2.1 Image Scanning
The dedicated material is separated into individual particles and then scanned with a CCD camera. The signals are evaluated and any unacceptable particles detected are then ejected. The standard scanning rate is 1 m/s at a resolution of 2.048 pixels. This is suffi-

Dipl.-Ing. Sigurd Schütz und Dr.-Ing. Matthias Coppers, Remscheid

*) Rheum GmbH, Remscheid

*) Rheum GmbH, Remscheid

1. Einführung und Funktion

Die optische Sortierung oder auch das mechanische Klauen mit einem Elektrosysten bietet sich überall dort an, wo Farbe das ein- fache Unterscheidungsmerkmal des Wertstoffs ist. Bei besonders wertvollen Materialien blieben bisher nur Lesebänder und die manuelle Sortierung übrig [1, 2].

2. Aufbau

Die erforderliche optische Sortierung muss dafür gesorgt wer- den, dass das Material vereinzelt wird, um von der Optik erkannt zu werden. In Bild 1 ist der Aufbau schematisch dargestellt.

2.1 Bilderkennung

Das entstandene Material wird vereinzelt und mit Hilfe einer CCD- Kamera erfasst. Die Signale werden ausgewertet und die erkan-
ten Partikel – falls erforderlich – ausgesiebt. Die Erfassungs-
geschwindigkeit liegt üblicherweise bei 1 m/s bei einer Auflösung
von 2,048 Bildpunkten. Sie gibt auch den kleinsten Wert des jewei-
ligen Sortierkriteriums wider. Bei einer Breite von z.B. 1,200 mm
stellt sich somit eine Auflösung von etwa 0,6 mm ein. Hierbei ist
jedoch unbedingt auf eine vorherige Entschüttung des Sortierga-
tes zu achten, da ein Staubschleier vor der Kamera die Sortierung
unmöglich macht.

Kamerachips mit höheren Auflösungen (5,000 Bildpunkte)
konnten bisher nicht durchsetzen, da der erhöhte Aufwand an
Steuerungs elektronik in keiner Relation zum Ergebnis stand.

Wird eine Farbortung zur Separation benötigt, so werden
drei Zeilenkameras zu einer Einheit zusammengeschaltet und mit
entsprechenden RGB-Filtern (Rot, Grün, Blau) ausgerüstet. Mit
jeweils werden auch kohärente CCD-Kameras angeboten, die
kameras in einer Baugruppe vereinigen. Die horizontal ausge-
richteten Zeilenkameras sind hierbei untereinander angebracht.
Diese Anordnung führt zu einem Zeitversatz in der Erkennung, der
durch die Steuerungselektronik ausgeglichen werden muss. Bei
Grenzfällen wird durch dieses systembedingte Handicap ein schie-
rer Ausgleich erschwert. Der Rheumawasinorter erfasst aus die-
sem Grund alle Grundfarben mit einzelnen lichtstarken Kameras,
die nebeneinander auf einer Montageachse fixiert sind und in der In-
betriebnahme einmalig justiert werden. Dadurch lassen sich die
dazu beschriebenen systembedingten Erkennungsprobleme ver-
meiden.

Neben der Kamerajustierung ist die Beleuchtung ein wesentli-
cher Faktor für eine erfolgreiche Sortierung. Handelsübliche
Leuchttstoffröhrchen mit Vorschaltsgeräten werden eingesetzt, um die
Lichtausbeute zu vergleichbaren. Außerdem ist zu beachten,
beim Neonzellen prinzipbedingt an den Enden eine geringe
Strahlungsentmündung haben. Dies wird durch einen Überstand der
Leuchttstoffröhrchen zur Sortierteilrichtung kompensiert. Die Röhren
soll-
ten vor Sortierbeginn eine gewisse Vorlaufzeit haben, da der Farb-
ton der Röhren unmittelbar nach Einschalten nicht dem endgül-
tigen Farbton entspricht.

Die Detektion des Auschusses erfolgt je nach Sortier aufgabe
in bis bis sechs Zeilenkameras (Bild 2) die je nach Aufgabenstel-
lung zu einer bzw. zwei Einheiten zusammengestellt werden. Dies
führt zur Einteilung in vier verschiedene Baureihen (Tabelle 1).
Durch Vorschalten frei wählbarer, geeigneter Filter lassen sich
ensortier aufgaben durchführen, die außerhalb der mensch-

Bild 1: Schematischer Aufbau des Rheumawasinorter

Bild 2: Zwei CCD-Kameras – mit und ohne Objektiv

Fig. 1: Schematic showing the set-up of the Rheumawasinorter system

Fig. 2: Two CCD cameras – with and without lens

cient für displaying even the smallest value of
the respective sorting criterion. At a width of e.g., 1,200 mm, this gives a resolution of
around 0.6 mm. It is essential to deduce the material to be sorted prior to scanning as
dirt clounds in front of the camera make sorting impossible.

Camera chips with higher resolutions (5,000 pixels) have not yet become estab-
lished as the higher costs for the control elec-
tronics bears no relation to the achievable
results.

If colour recognition is required for sort-
ing, three line cameras are interconnected to
form one unit and fitted with appropriate
RGB filters (red, green, blue). Combined
CCD cameras have since become available
with three cameras assembled in one unit.
In these systems, the horizontally oriented line
cameras are mounted below each other. This
arrangement, however, leads to a time delay
in the detection process, which must be off-
sert by the electronic control system. In bor-
derline cases, this system-related handicap can make reliable rejection of unacceptable
particles difficult. For this reason, the
Rheumawasinorter scans all primary
colours with individual light-intense cameras, which are mounted
next to each other on a rail and are aligned one single time during
commissioning of the machine. In this way, the previously
described detection problems can be avoided.

Besides camera alignment, illumination is another important
factor for successful sorting. Commercially available tubular flu-
orescent lamps with lamp ballasts are used to even out the luminous
intensity. In addition, it should be noted that, owing to the prin-
ciple of the operation of neon tubes, the tube ends exhibit a low-
er radiation intensity. To compensate for this, the length of the flu-
orescent tubes exceeds the sorting width at both ends. The tubes
should be switched on at a certain time in advance of actual sorting,
as the colour shade of the tubes immediately after being switched
on does not correspond to their ultimate colour shade.

The spot particles are detected by one to six line cameras
depending on the sorting duty (Fig. 2). These may be combined to
one or two units. The sorting machines are therefore classified into
four types depending on the intended application (Table 1).

With the connection of freely selectable, appropriate filters to
the cameras, it is possible to perform sorting tasks that are beyond
the range of human vision. One such example are sorting tasks
based on illuminance.
lichen Sichtbereich liegen: als Beispiel sei hier Illuminanz erwähnt.

2.2 Signalverarbeitung
Die Signale der Kameras werden zur Auswertung in die mitgeteilte PC-Steckkarte geführt (Bild 3). Bei der anfallenden Datenmenge erfolgt dies durch eine Hardwarelösung, die PC dient lediglich als Schnittstelle sowie als Speicher zur Mustererzeugung.

Die Einstellung der Sortierkriterien übernimmt ein PC: eine besondere Rechenleistung ist nicht nötig, da diese durch die zuvor beschriebene Hardwarelösung erfolgt.

2.3 Materialfahrung
Die optoelektronische Sortierung auf der Behandlung jedes einzelnen Partikels basiert, müssen diese einheitlich sicher an der Kamera vorbeigestellt werden. Entsprechend ist das Aufgabe material durch ein Sieb zu entstauben [3], um dadurch eine ungehinderte Sicht der Kameras sicherzustellen. Nach der Einstaubung wird die Aufgabe auf eine einkörnige Schicht verteilt, hierüber haben sich Magnetförderrinnen wegen der guten Regelbarkeit als

<table>
<thead>
<tr>
<th>Tabelle 1: Übersicht der Bauarten und deren Möglichkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sortiermaschine</td>
</tr>
</tbody>
</table>
| Material-
| eigenschaft | M | MM | C | CC |
| Monochrom durchgefärbt | | | | |
| Monochrom texturiert | | | | |
| Echtfarben durchgefärbt | | | | |
| Echtfarben texturiert | | | | |

2.2 Signal Processing
The signals from the camera(s) are transmitted to the supplied PC plug-in card (Fig. 3) for evaluation. Because of the large volume of data, the signals are processed by the hardware; the PC serves merely as an interface and as database storage for pattern recognition.

The data scanned by line are compared in real time with previously stored patterns. If they match, a signal is given to the relevant particle. In monochrome sorting, the brightness values (0-255) are determined and compared. In true color sorting, the three individual signals from the cameras (RGB) are also compared with the search patterns stored in a three-dimensional field. If all three parameters match, the signal transmission is initiated (Fig. 4).

A PC is used for the setting the sorting criteria: a high-powered PC is not necessary as the computations are performed by the hardware solution as described above.

The computer does perform statistical functions, like, for example, the determination of the total number of particles, reject particles, and so on. In addition, it is used to manage product parameters such as power, color brightness limit values, run times, lifetime of the lighting units, total operating hours, etc. The supplied software uses the linearization of the background lighting. Furthermore, one gamma correction can be defined for each color channel.

2.3 Material Handling
As optoelectronic sorting is based on the scanning of each individual particle, the particles must be individually visible as they pass in front of the camera. Accordingly, the fixed material should undergo dusting on a screen [3] to ensure that the camera has an unobstructed view of the particles. Following dusting, feed material must be separated and spread out in an appropriate layer; for this purpose, electromagnetic feeders have become established as standard equipment because of their ease of control. The individual particle falls over the edge between the illumination units (Fig. 5). It is scanned by the camera, the data is evaluated and, if necessary, the particle is ejected. The remaining flow of material remains unaffected and continues on its fall before being collected in different conveyors and transported onwards.

The reason for misplaced particles is ineffective isolation. If two particles are positioned behind each other during their fall through the detection unit and one is recognized as a reject particle, then it is highly probable that the acceptable particle will also be ejected.
Glass fibre cables are used for transmis-

tion of the previously determined data to the

to the power electronics for actuation of the blow-

out valves. For fast activation of the blow-

out valves, trigger ramps are operated by the

power electronics system. Recently, valve

 producers have started incorporating such

 actuation mechanisms directly in the valves

 themselves. It is, however, no longer possi-

 ble to subsequently optimize the control

times of these valves for a specific applica-

 tion and geometry, as would otherwise be

 possible.

The economic efficiency of a sorting

 machine is dependent on its consumption of

 compressed air as well as other known cri-

 teria. This consumption depends, on the one

 hand, on the percentage of reject particles,

 i.e. the number of ejections, and on the oth-

er hand, on the opening time of the valves

 described. For this reason, the ejector bar

 is custom built for the specific material and

 application. Factors to be taken into account

 in this connection are the density as well as

 the mean particle size and shape.

The outlets of the ejector bar are formed as flat slots across

 the sorting width. Tests with burlap cakes instead of slots led to longer

 valve closing times and therefore increased compressed air con-

 sumption while impairing the selectivity of the sorting process.

2.4 Concentration

In this system, the cameras only scan one plate of the particle.

 If the criterion for rejection is not detected on this plate, isolated

 reject particles can pass through the sorting machine. If these par-

 ticles cannot be tolerated, a second sorting machine is connected

 in series. The probability of a reject particle remaining undetect-

 ed when it passes by the cameras a second time is negligible. Such

 an additional sorting stage can be integrated in one machine by

 partitioning the sorting width and releasing the accepted particles

to the second sorting stage on an appropriate conveyor.

In this connection, it should be noted that a second sorting stage

 also increases the percentage of acceptable particles rejected

 (Fig. 6). For products of high value, resorting of rejected material is

 therefore advisable. In such a system, any acceptable particles

 ejected in the first stage are removed from the reject material in the

 second sorting stage and reclassified to the flow of material.

Bild 4: Schematische Darstellung der Signalerarbeitung

Fig. 4: Schematic showing signal processing

Bild 5: Sortierung im freien Fall

Fig. 5: Sorting in freefall
3. Typische Einsatzfälle
Gerade für die Stine- und Erdeindustrie, bei der die Rohmate-
rialien zu sichtbaren Endprodukten verarbeitet werden – wie Klin-
kerm, Putz, Keramik u. a. – ist es wichtig, dass das eingesetzte
Material, z. B. Feldspat [4], Flusspat [5], Kalk, Kalziumcarbonat
[6], Kreide, Braunstein und Schiefer [7], konstante Farb-
eigenchaften hat. Lassen sich z. B. nach der bergmännischen
Gewinnung und Grogzerkleinerung von Salz die Berge direkt
abtrennen, kam auf eine aufwändige und teure Nachbehandlung
der Produkte verzichtet werden.

Bei der Verarbeitung von Lebensmitteln muss – da das Auge
mißt – für eine gleich bleibende Qualität gesorgt werden. So ent-
stehen bei der Herstellung von Cornflakes im Röstofen zwangs-
läufig einige dunkle und verbrannte Flakes (Bild 7). Diese müssen
ausgeschieden werden. Mit dem Sortierer, der sich schon vielfach
in der Lebensmittelindustrie bewährt hat, kann dies wirtschaftlich
erreicht werden.

Bei fast allen Herstellungsvorgängen, in denen das Material einer
Temperatureinwirkung unterzogen wird, kommt es auf Grund
von unterschiedlichen Temperaturverteilungen und wechselnden
Verweilzeiten zu inhomogenen Materialeigenschaften. Zeichnen
sich diese durch verschiedene Materialfarben aus, lassen sie sich
weniger auswerten (Bild 8).

Bei der Verarbeitung von recycelten Materialien wie Kunst-
stoffen, Bunmetallement oder auch Glas kommt es neben der Mate-
räleinheit auch auf die Farbeinheit an [6]. In diesem Fall kann
mit einem Farbsortierer gearbeitet werden. Ein weiterer Einsatzfall ist das Sortieren nach der Korngröße ohne die Verwendung eines Sieghewesen. Diese Anwendung kann sich dann anbieten, wenn es sich um noch plastische-
triche Granulate handelt oder hohe nur Wertstoffe klassiert werden müssen.

4. Anlagenbau
Im Falle einer Verschachtelung der Sortieraufgabe – Nachklu-
bung bzw. -konzentration – werden den Materialkomponenten zu
einer Gesamtanlage kombiniert. Dies ermöglicht auf begrenztem
Raum mehrere Sortieraufgaben zu vereinen (Bild 9).

5. Wirtschaftlichkeit der optoelektronischen Sortierung
Abgestimmte und individuelle Kundenwünsche lassen sich die
bewährten Einkomponenten des RheumSorter zu einer wirtschaftlich arbeitenden Gesamtanlage kombinieren. Komplett
Material- und Handlings-Systeme und PC-Anbindung an das Fin-
systemnetzwerk entsteht eine vollständige Aufbereitungsstufe.

Schlüsselwörter/References:

In almost all production processes in which the material is subjected to thermal treatment, inhomogeneous material properties can result because of different temperature distributions and varying residence times. If these inhomogeneities are characterized by different material colours, the relevant particles can be removed in a sorting process (Fig. 8).

In the processing of e.g. Dyed materials, such as plastics, non-ferrous metals or even glass, colour purity can be just as important as material purity [8]. In such cases, colour sorting is essential.

Another application is sorting by particle size without the use of a sieve cloth. This application is suitable for processing static, fresh granulate or sizing value materials with high purity.

4. Plant Engineering

For complex sorting applications, e.g. inter-porating regidding or recollection, standard components are combined to form an integrated plant. This allows the combination of more than one sorting task within a confined space (Fig. 9).

5. Economic Efficiency of Optoelecronic Sorting

Tailored to individual customer requirements, the proven single components of the Rheumon Datensatz can be combined to an economically efficient integrated system. Complete with material handling, steel construction and PC automation to the company network, a complete processing stage is engineered.

Optoelectronic sorting can be used to obtain high-value pure products from natural raw materials with properties subject to natural variation. Impurities that are formed during production processes, e.g. burnt particles, can be removed at low cost.